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LElTER TO THE EDITOR 

A standard form for generalised CP transformations? 

G Ecker, W Grimus and H Neufeld 
lnstitut fur Theoretische Physik, Universitat Wien, Boltzmanngasse 5 ,  A-I090 Wien, Austria 

Received 28 May 1987 

Abstract. The investigation of general CP transformations leads to transformations of the 
form U + WTUW with unitary matrices U, W. It is shown that a basis of weak eigenstates 
can always be chosen such that WTUW has a certain real standard form. 

To study CP violation in theories with several fermion families it is necessary to consider 
general CP transformations. In the standard model (Glashow 1961, Weinberg 1967, 
Salam 1968) and its extensions like the left-right symmetric model (Pati and Salam 
1975, Mohapatra and Pati 1975, Mohapatra and SenjanoviC 1980) such a transformation 
acting on the quark or lepton fields has the form (Ecker et a1 1981, 1984, 1987) 

* ( X I  + UCPC**b0, -x) (1) 

where the vector of nG fermion fields $ (nG is the number of generations) has a definite 
chirality, U,, is a unitary nG x nG matrix acting in generation space and C is the Dirac 
charge-conjugation matrix. The CP transformation of the Higgs fields has a similar 
form. General CP transformations cannot only be used to constrain Yukawa couplings 
but they are also necessary for investigating if a given Lagrangian is CP invariant or 
not (Bernabeu et a1 1986). In both cases, basis transformations of the weak eigenstates 
are extremely useful. Redefining the fermion fields by 

* =  W**' ( 2 0 )  
the CP matrix U,, in the new basis is given by$ 

Ukp = w:, U,, w; 
with W, being a unitary matrix. Since basis transformations cannot change the physical 
content of a model we can question whether U,, can be brought to a certain simple 
'standard' form by applying the transformation ( 2 b ) .  The following theorem shows 
that this is indeed the case. 

Theorem. To every unitary n x n matrix U there exists a unitary matrix W such that 
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t Supported in part by Jubilaumsfonds der Osterreichischen Nationalbank, Project no 2765. 
$ In the case of time reversal, one obtains the same structure of basis transformations. 
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with 2 x 2 orthogonal matrices 

o <  8"s 7 1 2 ;  U =  1,. . . , I "=(  COS e,, sin e,, 
-sin 8, cos 0, (4) 

and with the m-dimensional unit matrix 1,. Furthermore, the angles 8, are determined 
by the Hermitian matrix 

i( U + UT)+( U + U') ( 5 )  
which has twice degenerate eigenvalues cos2 8, ( v  = 1 , .  . . , I )  and an m-fold degenerate 
eigenvalue 1 .  

Before proving the theorem we want to make a few remarks. For complex matrices 
U one cannot apply the theorems on normal matrices since transformations of the 
type (26) are not the usual similarity transformations. However, if U is real one can 
use the well known properties of real normal matrices to find an orthogonal W which 
brings U to the desired form (3). Therefore, the essential result of the theorem is that 
a general complex unitary U can always be made real by a transformation of the type 
(26).  Applying the theorem to a unitary 3 x 3 matrix illustrates nicely its main features: 
for every U there exists a unitary matrix W such that 

cos 8 sin 8 0 
W ~ U W =  -sin 8 cos 8 o o s  8s 7712, 

( 0  O J  

Furthermore, the matrix ( 5 )  has the eigenvalues cos2 8 (twofold degenerate) and 1 .  

symmetric and an antisymmetric matrix by 
In order to prove the theorem the matrix U can be decomposed into a sum of a 

U = f ( U +  U')+f(U- U'). ( 6 )  

(7) 

(8) 
with real and antisymmetric matrices A, B. Exploiting the unitarity of U leads to the 
four real equations 

Then there exists a unitary matrix W ,  such that (Schur 1945) 

w:$( U +  U') w, = D 

with D being diagonal and positive. Furthermore, one can write 

W:f( U - U') W,  = A + iB 

[ D , A ] = O  (9Q) 

(0, B}=O (96) 

[A, B]=O ( 9 c )  

(9d)  D ~ - A ~  - B~ = 1 

which are the starting point for further discussion. 

to have the form 
By an appropriate permutation of the basis vectors of C", D can always be arranged 
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with O = d o < d , <  . . .  < d k  and n o + n , +  . . .+ n k = n .  no may be zero but n i > O  for 
i = 1, .  . . , k. Now it follows from ( 9 a )  that A decays into blocks of ni x ni matrices Ai 
( i = o ,  *..,k): 

From ( 9 b )  we obtain 

B=(? ;) 
with an no x no matrix Bo. Of cours:, A, ( i  = 0, . , . , k )  and Bo are all antisymmetric 
matrices. 

WTUW, consists of the blocks A,+iB, and d,l,, ,  +A, ( i  = 1, .  . . , k )  which can now 
be discussed separately. Since -Af is positive ( 9 d )  implies d, 1. If dk = 1 then 
necessarily Ak = 0, n k  = m and A, is non-singular for i = 1, . . . , k - 1. For dk < 1 also 
Ak is non-singular and m = 0. Let us now assume 0 < d, < 1. By an orthogonal matrix 
we can transform A, to? 

with A i " ' >  0 (a = 1 , .  . . , ni /2 ) .  As a consequence of the orthogonality relation ( 9 d )  
we obtain 

A ( ' )  =. . . = AI"'/') = (1 - df )"* .  (14 )  
Thus we have arrived at the desired form (3) for the blocks with i = 1 ,  . . . , k. In each 
of these blocks the 8, are all equal with di = cos 8,. 

It remains to discuss the matrix Ao+iBo. Since Ao, Bo commute ( 9 c )  one can show 
that both can be brought to the form (13) by a common orthogonal transformation. 
For the non-zero matrix elements in (13) we write A?' and p?' (a = 1,.  . . , no/2) for 
A. and Bo, respectively. Since Ao+iBo is unitary we have 

and thus by a diagonal phase matrix @ we can achieve 
IAF'+ip.b"'l= 1 (15 )  

1 0  1 \ 

In this way also the zeroth block has been brought to the form (3) with all angles 
being n/2 in this block. Finally, from (7)  it is clear that the matrix (5) determines the 
angles of the orthogonal matrices (4). This completes the proof of the theorem. The 
transformation W is obtained as the product of all the transformations performed at 
each step of the proof. 

t n, must be even because A, is antisymmetric and non-singular. 
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Note added. In general, the most straightforward way to determine the parameters 8, of the standard form 
(3) is to diagonalise the matrix UU* with eigenvalues exp(*2iB,) ( Y = 1, .  . . , I )  and 1 (m-fold degenerate). 
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